- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kostadinova, Evdokiya (2)
-
Carmona-Reyes, Jorge (1)
-
Hartmann, Peter (1)
-
Hyde, Truell (1)
-
Konopka, Uwe (1)
-
Lipaev, Andrey M. (1)
-
Matthews, Lorin (1)
-
McCabe, Lori_Scott (1)
-
Ovchinin, Alexey (1)
-
Petrov, Oleg F. (1)
-
Pustylnik, Mikhail (1)
-
Pustylnik, Mikhail Y. (1)
-
Rosenberg, Marlene (1)
-
Sanford, Dustin (1)
-
Thakur, Saikat_Chakraborty (1)
-
Thoma, Markus (1)
-
Thoma, Markus H. (1)
-
Thomas, Edward (1)
-
Thomas, Hubertus (1)
-
Thomas, Hubertus M. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the presence of gravity, the micrometer-sized charged dust particles in a complex (dusty) plasma are compressed into thin layers. However, under the microgravity conditions of the Plasma Kristall-4 (PK-4) experiment on the International Space Station (ISS), the particles fill the plasma, allowing us to investigate the properties of a three-dimensional multi-particle system. This paper examines the change in the spatial ordering and thermal state of the particle system created when dust particles are stopped by periodic oscillations of the electric field, known as polarity switching, in a dc glow discharge plasma. Data from the ISS are compared against experiments performed using a ground-based reference version of PK-4 and numerical simulations. Initial results show substantive differences in the velocity distribution functions between experiments on the ground and in microgravity. There are also differences in the motion of the dust cloud; in microgravity, there is an expansion of the dust cloud at the application of polarity switching, which is not seen in the ground-based experiments. It is proposed that the dust cloud in microgravity gains thermal energy at the application of polarity switching due to this expansion. Simulation results suggest that this may be due to a modification in the effective screening length at the onset of polarity switching, which allows the dust particles to utilize energy from the potential energy in the configuration of the dust cloud. Experimental measurements and simulations show that an extended time (much greater than the Epstein drag decay) is required to dissipate this energy.more » « less
-
Vermillion, Katrina; Sanford, Dustin; Matthews, Lorin; Hartmann, Peter; Rosenberg, Marlene; Kostadinova, Evdokiya; Carmona-Reyes, Jorge; Hyde, Truell; Lipaev, Andrey M.; Usachev, Alexandr D.; et al (, Physics of Plasmas)Self-organization of dust grains into stable filamentary dust structures (or “chains”) largely depends on dynamic interactions between individual charged dust grains and complex electric potential arising from the distribution of charges within a local plasma environment. Recent studies have shown that the positive column of the gas discharge plasma in the Plasmakristall-4 (PK-4) experiment at the International Space Station supports the presence of fast-moving ionization waves, which lead to variations of plasma parameters by up to an order of magnitude from the average background values. The highly variable environment resulting from ionization waves may have interesting implications for the dynamics and self-organization of dust particles, particularly concerning the formation and stability of dust chains. Here, we investigate the electric potential surrounding dust chains in the PK-4 experiment by employing a molecular dynamics model of the dust and ions with boundary conditions supplied by a particle-in-cell with Monte Carlo collision simulation of the ionization waves. The model is used to examine the effects of the plasma conditions within different regions of the ionization wave and compare the resulting dust structure to that obtained by employing the time-averaged plasma conditions. The comparison between simulated dust chains and experimental data from the PK-4 experiment shows that the time-averaged plasma conditions do not accurately reproduce observed results for dust behavior, indicating that more careful treatment of plasma conditions in the presence of ionization waves is required. It is further shown that commonly used analytic forms of the electric potential do not accurately describe the electric potential near charged dust grains under these plasma conditions.more » « less
An official website of the United States government
